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ABSTRACTS 

The African grasscutter (AGC; Thryonomys swinderianus) has been observed to possess unique physiological and 

structural features enabling them to survive in challenging environments. This behavior displayed by AGCs across 

different age groups could be attributed to a well-developed CNS where M1 cerebrum plays a critical role. This 

study described the morphological (gross and microscopic) characteristics of the cerebrum of adult and juvenile 

AGCs. Eight AGCs were procured and euthanized, brain was excised for morphological characteristics 

(gyrifification, brain dimensions, and organosomatic index), light microscopic assessment of the cerebral M1 

region using H&E stains for histological features, and Cresyl Violet stain for histometric analysis (pyramidal soma 

size). Results revealed similar gyrification patterns on the dorsal surface of cerebral hemispheres across the age 
groups. The assessed brain dimensions revealed higher values (p>0.05) for the adult, except in the cerebral 

dorsoventral length, compared to the juvenile AGCs. The organosomatic index was higher (p<0.05) in the juvenile 

compared to adult AGCs. Histologically, layers III and V of the cerebral M1 region presented with pyramidal 

neurons as the predominant cells across the age groups, and appeared denser in the juvenile AGCs. 

Histometrically, the juveniles revealed higher (p>0.05) pyramidal soma size values in cerebral M1 layers (III and 

V), compared to the adult AGCs. In conclusion, morphologic features of the AGC’s brain are relatively similar to 

those described in other rodents. Variations in the gross and microscopic features of the AGC cerebrum exist 

across age groups. 
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INTRODUCTION 

The brain, an integral part of the nervous system of 

vertebrates, has developed in both size and 

complexity, with mammals, especially humans, 

having the largest brain in proportion to their body 

size1. Different parts and regions of the brain are 

morphologically and functionally unique; critical as a 

seat of intelligence, interpreter of senses, initiator of 

body movement, and controller of behavior2. The 

cerebrum is the largest and most developed of the 

major parts of the brain, composed of the cortical and 

subcortical structures. The mammalian cerebral cortex 

presents with unique and distinctive morphologic 

features, involved in motor activity, memory, 
language and consciousness3.  

Thryonomys swinderianus (African Grasscutter, 

AGC) is an African rodent species with unique 
morphologic and physiological adaptations that 

enable them to survive in challenging environments. 

The AGCs have shown wonderful use of the hind 

limbs by standing upright on their limbs, taking a 

bunch of grass in their fore limb, sitting upright on 

their haunches and feeding the grass into their mouth 

slowly cutting it up into small bits 4. Additionally, the 

AGC is a skilled burrower whose well-developed 

central nervous system may have evolved in response 

to these behaviors. Certain behavioral patterns 

including feeding, agility, alertness, response to 

environmental pressures, and escape from predators 
have been described in AGCs in their natural habitat 

across different age groups. Hence, has drawn 

attention of neurobiologist to consider this species as 

a potential research tool 5, 6.  

Previous studies have described the basic features of 

AGC nervous system; the brain 6-9 and recently, the 

spinal cord 10. However, there are no well-established 

investigations towards depicting the differences in the 

cortical neuronal organization and cytoarchitectural 

features of the cerebral M1 region which is a critical 
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step towards understanding planned voluntary 

movement of this species across different age groups. 

Therefore, this study described and characterized the 

morphological features of the cerebrum in juveniles 

and adult AGCs (Thryonomys swinderianus) using 
gross and microscopic approaches. 

MATERIALS AND METHODS 

Experimental animals 

A total of eight (8) apparently healthy AGCs 

consisting of 4 adults and 4 juveniles were obtained 

from Okiki Farm, Lokoja, Kogi State, Nigeria. The 

AGCs were transported in a ventilated wooden cage 

to the Animal House, Department of Human 

Anatomy, Faculty of Basic Medical Science, Ahmadu 

Bello University (ABU), Zaria, housed under standard 

laboratory conditions, and allowed to acclimatize for 

a week prior to the commencement of the study. The 

AGCs were fed with sugar cane during the study 

period.  

Ethical approval 

This study was conducted in accordance with global 

best practices for laboratory research with consent 

from the Committee for Ethics in Animal 

Experimentation of ABU, Zaria 

(ABUCAUC/2023/108). 

Experimental design 

The AGCs were grouped into two groups, containing 

adult and juveniles (n= 4), weighed and euthanized 

using chloroform anesthesia. The brains were 

carefully dissected out of the cranial cavity, 

morphological characteristics were measured and 

immediately fixed in neutral buffered formal saline for 

subsequent studies (Figure 1). 

      

Figure 1: Experimental design 

Morphological Studies 

Physical observation of gross features was conducted 

on the dorsal, lateral and ventral surfaces of the 

harvested whole brain. The brains were weighed using 

a digital weighing scale (Notebook Series Digital 

Scale, China; 0.01g) and organosomatic (brain-body 

weight) index was computed (brain weight/absolute 

body weight ×100 11) Brain dimensions were 

measured according to the methods described by 

Ivang et al. 12 using an electronic digital Vernier 
caliper (150 mm, China). The dimensions were: brain 

length (antero-posterior), cerebral length (antero-

posterior most prominent points), cerebral width 

(right-left most prominent points), and cerebral dorso-

ventral length (thickness most prominent points) 

(Figure 2). 
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Figure 2: Measurement of brain dimensions of the African grasscutter. A: Dorsal surface B: Lateral 

  surface; i: Brain length (Rostro-caudal/or anteroposterior); ii: Cerebral length; iii: Cerebral 

  Width or Transverse Dimension; iv: Cerebral dorsoventral length. 

Histological assessment 

The fixed brain specimens were processed using 

histological techniques for light microscopic 
examinations, stained with Hematoxylin and Eosin 

(H&E) and Cresyl Fast Violet (CFV) stains for the 

demonstration of cytoachitectural features. The 

specimens were sectioned coronally to target specific 

brain region of interest; primary motor cerebral cortex 

(M1 cerebral region), using prescribed landmarks 

from the Rat Brain Atlas 13 (Figure 3). The processed 

paraffin sections were examined at different 

microscopic magnifications and compared across the 

different age groups (adult and juvenile). Histological 

tissue processing and micrography was carried out at 

the Histological Unit of the Department of Human 

Anatomy, ABU, Zaria.  

 

Figure 3: Coronal section of the AGC brain targeting M1 cerebral region. M1: Primary motor cerebral 

  cortex; broken black line: point of brain section. 

Histometric analysis 

Histometry was conducted according to the method of 

Huda and Zaid 14 and modified as described by Agbon 

et al 15. This involved measuring the cell soma area 

and perimeter of pyramidal cells from CV-stained 

micrographs of layers III and V (M1 cerebral cortex) 
of AGCs (juvenile and adult). A light microscope 

(HM-LUX, LeitzWetzlar, Germany) with a 25/ 0.5 × 

objective (× 250 magnification), a micrometer slide (1 

mm graduated in 0.01 mm units; that is divided 10 into 

100 µm units) and a computer running imaging 

software (AmScope MT version 3.0.0.5, USA) 

according to the manufacturer’s instruction was used. 

Five different micrographic fields were randomly 

captured in the M1 region (layers III and V) and 7–10 
neurons that met the criteria for selection (that is, 

pyramidal neurons with well-outlined nucleus in the 

cell profiles were randomly selected); using the 

AmScope imaging software polygon tool, soma area 

and perimeter were measured and mean values 

analyzed. Mean values obtained were statistically 

compared across age groups. 
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Data analysis  

Data obtained were analyzed using the GraphPad 

Prism version 9.0 and the results were expressed as 

mean ± S.E.M. Presence of significant differences 

among means of the groups were determined using 

independent t-test. P-values less than (p˂0.05) was 

considered statistically significant. 

RESULTS 

Morphological assessments 

The AGC brains were observed to be milky in color 

and presented with two major sulcal depressions on 

the dorsal surface: a coronal plane-oriented depression 

and the other a sagittal plane-oriented depression. The 

coronal plane-oriented depression separates the 

cerebrum (forebrain) from the cerebellum (hindbrain) 

and the sagittal plane-oriented depression separates 

the cerebrum into two hemispherical halves. Minor 

(sulcal) depressions (grooves) with certain patterns 

were observed on the dorsal surface of each halve of 

the cerebral hemispheres of the adults AGCs. These 
minor depressions, however, were not as prominent in 

the juveniles compared to the adults. Additionally, the 

pattern of these depressions varies in the juvenile 

compared to the adult AGCs.  

The brain ventral surfaces in both adult and juvenile 

AGCs presented with distinct parts of the brain 

including the optic chiasma just rostral (anterior) to 

the midbrain. Other brainstem structures (pons and 

medulla) are delineated by depressions, the medulla 

continues caudally with the spinal cord. Moreover, 

vasculatures and other related features were observed 

(Figure 4). 

 

Figure 4: Brain of the African grasscutter. Dorsal View, I: adult; III: juvenile; Ventral view, II: adult; IV: 

  juvenile; 1: Cerebrum; 2: Cerebellum; 3: Sagittal (intercerebral) fissure, separating the cerebral

  hemispheres; 4: Sulcal depression; 5: Optic chiasma; 6: Optic tract; 7: Pons; 8: Medulla. 

Brain weight and dimensions 

The mean AGC brain weight for adults was greater 

than 11 g compared to that of the juvenile which was 

less than 10 g.  A comparison of the brain weights 

revealed insignificant differences between the male 

adult and juvenile (Figure 5). The organosomatic 

index of AGCs revealed significant (p<0.05) 

differences relative to age; the juveniles had higher 

mean value than their adult counterparts (Figure 6).   
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Figure 5: Brain weight comparison between adult and juvenile AGC. n=6, Mean ± SEM, Independent 

  sample t-test, p>0.05 when juvenile was compared to adults 
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Figure 6: Brain body weight (BBWR) comparison between adult and juvenile AGC. n=6, Mean ± SEM, 

  Independent sample t-test, **=p<0.005 when juvenile was compared to adults 

Brain dimensions 

Relative to brain dimensions, the adult AGCs revealed 

higher mean values for all the measured dimensions, 

except cerebral dorsoventral length, compared to their 

juvenile counterpart. The difference was only 

significant in the brain length (Table 1). 

Table 1:  Morphometric comparison between Adult and Juvenile AGC 

Variables 
Adult n=3 

(Mean ± SEM) 

Juvenile n=3 

(Mean ± SEM) 
t P 

CL (mm) 25.73±3.57 21.13±1.62 2.031 0.142 

CW (mm) 28.73±0.25 27.83±0.84 1.780 0.198 

BL (mm) 44.77±0.45 34.5±1.87* 9.228 0.001 

DVL (mm) 16.8±0.79 18.07±2.21 -0.934 0.403 

n=6, Mean ± SEM, Independent sample t-test, *=p<0.05 when juvenile was compared to adults 

CL: Cerebral Length, CW: cerebral width, BL: Brain Length, DVL: Dorsoventral Length. 
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Histological studies 

Coronal section through cerebral cortex at varying 

microscopic magnifications revealed distinct 

histoarchitectural features of the adult and juvenile 

AGCs. At a lower magnifying power, the cortical and 

subcortical region including their structures were 

observed (Figure 7).   

At a high microscopic power of ×40, dorsoventrally, 

the presence of pia mater lining the cortex with 

shallow depressions, cortical region with six lamina 

(layers), blood vessels and a white mater region 

(devoid of prominent cell nuclei; the corpus callosum) 
were observed. There were no observable differences 

in the histoarchitectural features between the age 

groups (Figure 8). 

 

Figure 7: Coronal section of African grasscutter brain. H&E stain. III: layer III of cerebral cortex; IV: 

  layer V of cerebral cortex 

 

Figure 8: Coronal section of adult and juvenile African grasscutter brain. H&E Stain X40. A: Adult; 

 B: Juvenile; P: Pia mater; I: molecular layer; II: external granular layer; III: external  

 pyramidal layer; IV: Internal granular layer; V: Internal pyramidal layer; VI: Multiform 

 layer; BV: Blood vessels; W: White mater. 
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Cortical M1 region (layers III and V) at a higher 

microscopic power of ×250 revealed two major 

neurons: stellate and pyramidal; neuroglia cells, and 

blood vessels. The pyramidal neurons in layer V were 
observed to be denser compared to those in layer III. 

In comparison, the distribution of cells (neuronal and 

glial) appeared to be different between the age groups; 

the juveniles presented with more distinct pyramidal 

cells when compared to the adults. Staining of the 

layers III and V sections with Cresyl Fast Violet 

revealed positive reactivity with distinct cell 
morphologies; stellate and pyramidal neurons 

including blood vessels (Figure 9).  

 

Figure 9: Coronal section of African grasscutter brain. H&E and CFV (micrograph at the middle) 

  ×250. A and B; layer III of adult and juvenile; C and D: layer V of adult and juvenile; P:  

  Pyramidal neurons; BV: Blood vessels; S: Stalette neurons. 

Histometric characteristics  

The mean histometric characteristics (soma area and  

perimeter) of pyramidal neurons in layers III and V 

revealed higher values in the juvenile compared to the 

adult AGCs (Figures 10 and 11). 
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Figure 10: Comparison of Layer III pyramidal cell soma (area and perimeter) between adult and juvenile 

  AGC. n=6, Mean ± SEM, Independent sample t-test, p> 0.05 when juvenile was compared to 

  adults 
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Figure 11: Comparison of layer V pyramidal cell soma (area and perimeter) between adult and juvenile 

  AGCs. n=6, Mean ± SEM, Independent sample t-test, p> 0.05 when juvenile was compared to 

  adults 

DISCUSSION  

Generally, the dorsal and ventral morphological 

features observed in the AGC brain is in agreement 

with reported brain characteristics in rodent species 16, 

17, 18. Sulcal depressions observed on the dorsal surface 

of the cerebrum suggest the species to be 

gyrencephalic. This finding agrees with reported 

gyrencephalic cortex in some rodents including the 

agoutis and guinea pigs having certain patterns of gyri 

on cortical cerebral surfaces 19, 20. However, this 

finding is at variance with the commonly reported 

lissencephalic cerebral cortex for rodents 21. This 
variance could be associated with evolutionary 

adaptive variation in this species, AGC, or probably 

influenced by factors including environment and 

genetics 20. 

The observed mean absolute body weight of AGCs; 

greater than 2 kg is in line with reported values for 

adults AGCs. This placed the species as a large rodent; 

larger than the African giant rat (Cricetomys 

gambianus) with reported mean absolute body weight 

> 1 kg 22 for adults, but less weighty than some rodent 

species including porcupine with reported mean 

absolute body weight > 7 kg 23. 

 Brain size is a measure of its dimension, volume and 

weight. It varies with species, breed, sex and age. The 

mean brain weight of AGCs in this study was 

observed to be > 11 g agreed with reported mean 

values for adult AGCs 6, 21. This mean brain weight 

value is greater than that reported for murine, 

hamsters, squirrel 24, guinea pigs18 and African giant 
rats 9, 22. However, the brain weight of the juvenile 

AGC observed to be <10g could be attributed to the 

size for its age. This finding is in line with the report 

of 6; the brain weight increases with the size of the 

rodent. Changes in brain size are due to changes in the 

number of neuronal and neuroglial cells in the brain, 

which is dependent on the extent or rate of 

neurogenesis 6.   

The organosomatic index quantifies the percentage of 

brain mass relative to the absolute body weight 6 and 

an integral factor of encephalization quotient, a 

measure of intelligence of species. This index has 

been established to differ from one taxon or age group 

to another 25. In this study, the juvenile revealed a 

remarkably higher values for brain-body weight index 

compared to the adult. This suggests that the juvenile 

AGC is probably more intelligent than the adult. This 

finding is in line with the result of encephalization 
quotient test reported by Ibe et al. 6 who pointed out 

higher cognition in the neonate and juvenile AGCs, 

compared to the adults. The fact that neurons are lost 

via apoptosis during neurogenesis as the species 

advanced in age could possibly be the reason for a 

lower index value in adult than juvenile AGCs. 

Additionally, ageing has been established to pose 

some structural changes on brain cells and by 

extension the gross morphology of the brain, and 

cognition 26.  

Brain dimensions has been hypothesized in the 

mammalian species to increase with increasing cranial 

cavity 6. In this study, the brain dimensions of the adult 

AGCs were observed to be higher than that of the 

juveniles, this could be due to its correlation with the 
brain weight. This finding agrees with reports that 

attributed higher brain dimensions to higher brain 

weights in different species 17, 18. The mean brain 

length of the adult AGCs observed in this study is 

higher than the value reported for the adult African 

giant pouched rat 27, but less than the value reported 

for the adult squirrel 21. These differences could be 

attributed to species variations, body sizes, and varied 

cognitive abilities.  
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Histologically, lamina organization of the AGCs 

cerebral M1, differentiated by the presence of 

different cells within the laminae; bounded by pia 

mater, superiorly and a running corpus callosum, 

inferiorly is a common characteristic of mammalian 
species including Wistar rats, Guinea pigs, African 

giant rat 28, 29, 15. Neuronal cells are the main cellular 

components of the nervous tissues, and the glial cells 

are supporting components 30, 31. Varying cell 

morphologies observed in AGCs cerebral  M1 (layers 

III and V) including neuronal cells; stellate and 

pyramidal cells, and neuroglia cells are typical of 

nervous tissues presenting with morphologically 

distinct cell types that are functionally related 17, 

32,33,34. Oorschot 34 reported varying neuronal cell 

morphologies in mammals including primate and non-

primate species, especially rodents; mice and rats.  

The presence of pyramidal cells and glial cells in the 

cerebral M1 region are critically involved in the 

circuitry of motor related functionality in mammalian 
species 15 and indicates nutritive, supportive, and other 

regulatory functions, respectively in the cerebral M1 

region of this species (AGCs). The accompanying 

blood capillaries within the AGCs cerebral M1 layers 

shows a typical vascularized tissue similarly reported 

in mammalian species 35, 36.  

Pyramidal cells positive reactivity to the 

histochemical stain, CFV, indicates their involvement 

in normal physiological and biochemical processes 

necessary for nervous tissue function 37. In this study 

the pyramidal neurons in both layers III and V of adult 

and juvenile reacted positive to CFV stain; which 

indicates their involvement in biochemical functions. 

This is in conformity with the report of 17Ibegbu et al.; 

histochemical reactivity of pyramidal neurons in 

cerebral cortex to CFV stain; an excellent neuronal, 
cell body-specific stain. 

Histometric quantification of 2D- histological data is 

an important tool that provides an objective basis for 

comparison of histological observation38, 14. It 
improves assessment of certain histological change, 

which though may be recognizable by eye, are 

accurately graded and their progression better 

appreciated by histometric quantification 15, 39. This 

study applied histometry to quantify the pyramidal 

neuronal sizes (area and perimeter) within the layers 

III and V of the M1 cerebral region and compared 

across the ages of AGCs. The observed remarkable 

differences in pyramidal neuronal sizes between adult 

and juvenile, explained the variation in neuronal sizes 

amongst the compared age groups with juvenile 
having a higher value, which could be a reflection of 

motor functionality of the juveniles being more 

physically active and adventurous; cells vary greatly 

in size relative to cellular functionality rather than the 

size of the organism 40. This finding is in contrast with 

the study that reported some cells including neurons 

are longer and larger in larger animals compared to 

that of smaller animals of same species 41. 

Additionally, finding suggests the AGC pyramidal 

neuronal sizes are larger than those of Wistar rats 

reported by Agbon et al 15. This could probably 
support the notion that neuronal sizes increase with 

rodents’ size. Larger rodents such as African 

grasscutter and African giant pouched rat may be 

better models for electrophysiological studies as they 

have absolutely larger neurons that can easily be used 

for intracellular electrode recordings than smaller-

sized rodents like rat and mouse 23. 

Conclusion 

Morphologic features of the AGC’s brain are 

relatively similar to those described in other rodents. 

There exist variations in the gross and histologic 

features of the AGC cerebrum across age groups. 

These findings are of potential benefit in 

understanding the neuroanatomy of this species and 

their behavior in natural habitat. 
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